间歇性更新ing
多项式
R.<x> = PolynomialRing()
定义一个多项式环R包含变量x
参数:QQ有理数,ZZ整数,Zmod(n)模n域
.roots()
求一元多项式的根和重数
.subs()
多项式未知数替换为定值{variable:value}
或直接使用多项式(value1,value2...)
.degree()
返回最高次数
.monic()
返回最高次系数化为1的多项式
.coefficients()
升序返回所有系数
.factor()
对多项式进行因式分解
求多元多项式的根
例:
R.<x,y> = PolynomialRing(ZZ)
f = x^2-2*x+y
g = y+x-2
I = (f,g)*R
print(I.groebner_basis())
# [y^2 - y, x + y - 2]
模板
Half-GCD模板
# sage
def Half_GCD(a, b):
if 2 * b.degree() <= a.degree() or a.degree() == 1:
return 1, 0, 0, 1
m = a.degree() // 2
a_top, a_bot = a.quo_rem(x^m)
b_top, b_bot = b.quo_rem(x^m)
R00, R01, R10, R11 = Half_GCD(a_top, b_top)
c = R00 * a + R01 * b
d = R10 * a + R11 * b
q, e = c.quo_rem(d)
d_top, d_bot = d.quo_rem(x^(m // 2))
e_top, e_bot = e.quo_rem(x^(m // 2))
S00, S01, S10, S11 = Half_GCD(d_top, e_top)
RET00 = S01 * R00 + (S00 - q * S01) * R10
RET01 = S01 * R01 + (S00 - q * S01) * R11
RET10 = S11 * R00 + (S10 - q * S11) * R10
RET11 = S11 * R01 + (S10 - q * S11) * R11
return RET00, RET01, RET10, RET11
def GCD(a, b):
print(a.degree(), b.degree())
q, r = a.quo_rem(b)
if r == 0:
return b
R00, R01, R10, R11 = Half_GCD(a, b)
c = R00 * a + R01 * b
d = R10 * a + R11 * b
if d == 0:
return c.monic()
q, r = c.quo_rem(d)
if r == 0:
return d
return GCD(d, r)
多元Coppersmith
# sage
def small_roots(f, bounds, m=1, d=None):
if not d:
d = f.degree()
R = f.base_ring()
N = R.cardinality()
f /= f.coefficients().pop(0)
f = f.change_ring(ZZ)
G = Sequence([], f.parent())
for i in range(m + 1):
base = N ^ (m - i) * f ^ i
for shifts in itertools.product(range(d), repeat=f.nvariables()):
g = base * prod(map(power, f.variables(), shifts))
G.append(g)
B, monomials = G.coefficient_matrix()
monomials = vector(monomials)
factors = [monomial(*bounds) for monomial in monomials]
for i, factor in enumerate(factors):
B.rescale_col(i, factor)
B = B.dense_matrix().LLL()
B = B.change_ring(QQ)
for i, factor in enumerate(factors):
B.rescale_col(i, 1 / factor)
H = Sequence([], f.parent().change_ring(QQ))
for h in filter(None, B * monomials):
H.append(h)
I = H.ideal()
if I.dimension() == -1:
H.pop()
elif I.dimension() == 0:
roots = []
for root in I.variety(ring=ZZ):
root = tuple(R(root[var]) for var in f.variables())
roots.append(root)
return roots
return []
flatter计算small_roots
from subprocess import check_output
from re import findall
def flatter(M):
# compile https://github.com/keeganryan/flatter and put it in $PATH
z = "[[" + "]\n[".join(" ".join(map(str, row)) for row in M) + "]]"
ret = check_output(["flatter"], input=z.encode())
return matrix(M.nrows(), M.ncols(), map(int, findall(b"-?\\d+", ret)))
def small_roots(self, X=None, beta=1.0, epsilon=None, **kwds):
from sage.misc.verbose import verbose
from sage.matrix.constructor import Matrix
from sage.rings.real_mpfr import RR
N = self.parent().characteristic()
if not self.is_monic():
raise ArithmeticError("Polynomial must be monic.")
beta = RR(beta)
if beta <= 0.0 or beta > 1.0:
raise ValueError("0.0 < beta <= 1.0 not satisfied.")
f = self.change_ring(ZZ)
P, (x,) = f.parent().objgens()
delta = f.degree()
if epsilon is None:
epsilon = beta / 8
verbose("epsilon = %f" % epsilon, level=2)
m = max(beta**2 / (delta * epsilon), 7 * beta / delta).ceil()
verbose("m = %d" % m, level=2)
t = int((delta * m * (1 / beta - 1)).floor())
verbose("t = %d" % t, level=2)
if X is None:
X = (0.5 * N ** (beta**2 / delta - epsilon)).ceil()
verbose("X = %s" % X, level=2)
# we could do this much faster, but this is a cheap step
# compared to LLL
g = [x**j * N ** (m - i) * f**i for i in range(m) for j in range(delta)]
g.extend([x**i * f**m for i in range(t)]) # h
B = Matrix(ZZ, len(g), delta * m + max(delta, t))
for i in range(B.nrows()):
for j in range(g[i].degree() + 1):
B[i, j] = g[i][j] * X**j
B = flatter(B)
f = sum([ZZ(B[0, i] // X**i) * x**i for i in range(B.ncols())])
R = f.roots()
ZmodN = self.base_ring()
roots = set([ZmodN(r) for r, m in R if abs(r) <= X])
Nbeta = N**beta
return [root for root in roots if N.gcd(ZZ(self(root))) >= Nbeta]